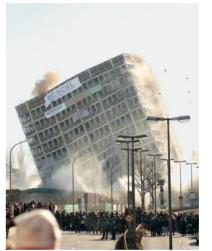


Structural Vibration Measurement with the VM40C Vibration Monitor


Why Measure Structural Vibration?

- Buildings and other large structures like bridges, tunnels or pipelines are exposed to vibration.
- Buildings must sustain vibrations, structural integrity and bearing capacity of ceilings and other components has to be ensured.
- Historic buildings require special attention.
- · Vibrations may affect habitability and working conditions.

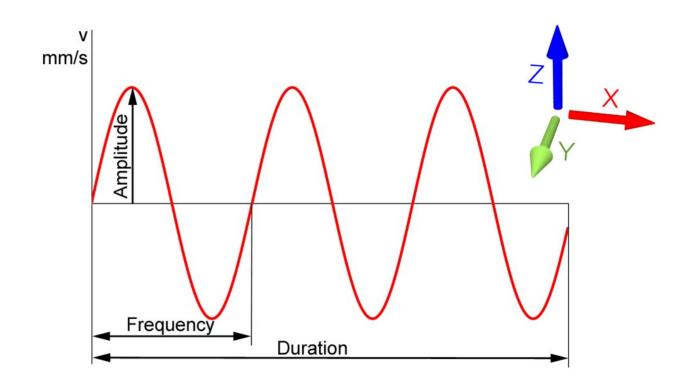
Sources of Building Vibration

- · Construction activities
- · Industrial machinery
- · Road traffic
- · Railway lines
- · Explosions

Goals of Building Vibration Measurement

- · Problem recognition: Occupants of a building report that a building is vibrating, measurements are carried out to evaluate the risk for structural integrity
- Control monitoring: Maximum permissible vibration values have been established and those vibrations have to be measured
- Documentation: Measurements are made to verify predictions of response in the design of a building
- Diagnosis: Measurements are made at deeper levels of investigation to provide information for mitigation procedures

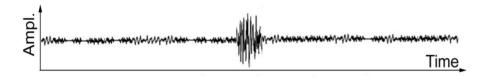
Catastrophic Failure


- Collapse of Rana Plaza commercial building in Dhaka (Bangladesh) in 2013
- Vibrations due to power generators overloaded the Building structure
- Vibrations and cracks were ignored
- Death toll 1134

Parameters of Excitation

- · Amplitude
- · Frequency
- · Duration
- · Direction

Guide Values

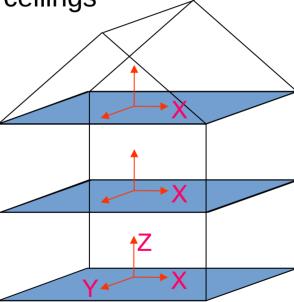

- Some standards, like the German DIN 4150-3, give reference values based on the experience of a large number of practical measurements.
- At vibration amplitudes below these guide values damages are unlikely.
- If results are above the guide values a deeper analysis should be made.

Types of Structural Vibration

Transient Vibrations	Continuous Vibrations
 Not strong enough to cause material fatigue Too short and too rare to be increased by resonances 	 May cause material fatigue Resonances may increase vibration magnitudes

Standards for Building Vibration (Examples)

- German DIN 4150-3 with various derivatives in other countries:
 Vibration in buildings Part 3: Effects on structures
- · British BS 7385: Evaluation and measurement for vibration in buildings. Guide to damage levels from ground borne vibration
- Swiss SN 640312a: Vibration immission in buildings
- · ISO 4866: Mechanical vibration and shock Vibration of fixed structures Guidelines for the measurement of vibrations and evaluation of their effects on structures
- French Circulaire du 23/07/86


British Standards

Measurement Points

• Building vibration is measured in 2 directions (X/Y) or 3 directions (X/Y/Z)

· Typical measurement points are the foundation and ceilings

The VM40C Vibration Monitor

- · Includes triaxial high sensitivity accelerometer
- Monitors peak value of velocity or acceleration
- · Supports several international standards

The VM40C Vibration Monitor

- · Rechargeable battery for autonomous operation
- · Memory for recording, USB interface
- · Rugged design for outdoor operation

Cellular Network Connectivity


- · Optional 4G (LTE) cellular modem
- SMS sent at alarm events
- HTTP data communication with IoT platforms

Connection to IoT Measurement Data Platforms

- Uses 4G (LTE) cellular modem
- HTTP communication with sensor data platforms
- Provides remote access to current and historic vibration data

Radio-Controlled Alarm Beacon Light

- For remote alerting in construction machinery etc.
- Uses efficient long-range (LoRa) radio communication standard
- · Reaches over 1 km in free range
- Battery operated

External Processing of Measurement Data

- PC software for data from internal memory
- Report generation, archiving and visualization

