1. Introduction

Transducer Electronic Data Sheet (TEDS) is a standardized method of storing sensor identification, calibration, correction data, and manufacturer-related information. TEDS formats are defined in the IEEE 1451 series of standards describing smart transducers as a set of open, common, network-independent communication interfaces for connecting transducers to microprocessors, instrumentation systems, and control/field networks.

One of the key elements of the IEEE 1451 standards is the definition of TEDS for a transducer. TEDS in its most useful form is implemented as a memory device, typically EEPROM, as part of the transducer. It contains the information needed by a measurement instrument or control system to interface with a transducer. Other forms, like a "virtual TEDS" are not discussed here.
Most TEDS applications use a 1 -Wire ${ }^{\circledR}$ EEPROM memory device which is manufactured by Maxim Integrated. As the name suggests the 1 -Wire protocol allows read and write communication via a single wire and a ground terminal. This feature makes it particularly suitable for the integration into the analog signal conditioning electronics of IEPE transducers. Part 4 of IEEE 1451 deals with this particular subject.

Communication with the TEDS memory device inside the sensor is performed via the single-ended signal cable. The memory device is supplied by a logic voltage between 3 and 5 V with negative polarity referred to ground. This negative voltage is modulated with the standardized 1-Wire communication protocol. To separate the positive IEPE sensor output from the negative TEDS data two diodes are provided. Figure 1 shows the principle.

Figure 1: Basic concept of TEDS in an IEPE sensor
The purpose of this document is to provide you with the necessary information how TEDS data is stored inside the sensor and how it can be decoded on the instrument side. Due to the small size of the used memory device the data needs to be stored in a packed format. This document shows application examples with the memory device DS2430A which is obsolete but commonly used in legacy TEDS sensors and the DS2431 that is under production and currently used for Metra sensors.

2. Basic TEDS

Basic TEDS is a 64 bit portion of the memory containing the most essential information to identify the sensor. It includes the following data:

- Manufacturer code
- Type (coded or clear text)
- Version number / letter
- Serial number

It is obvious that this data needs to be programmed only once in the manufacturing process and should not be manipulated later. The following table shows how basic TEDS data is coded.

Entry	No. of bits	Data type	Meaning	Example
Man_ID	14	binary	manufacturer code (17 to 16381) *	3Dh (61)
Model	15	binary	type number (0 to 32767) **	46h (70)
Ver_Let	5	Chr5	version letter (0 = space, 1 = A, 2 = B..., . /_@)	1h (A)
Ver_No	6	binary	version number (0 to 63)	2h (2)
Ser_No	24	binary	serial number (0 to 16777215)	202h (0514)

Manfred Weber

Metra Mess- und Frequenztechnik in Radebeul e.K.
Meißner Str. 58
D-01445 Radebeul
Tel. +49-351-836 2191
P.O. Box 010113

D-01435 Radebeul
Fax +49-351-836 2940

Page 1
December 19
Internet: www.MMF.de
Email: Info@MMF.de

* Manufacturer codes are issued by IEEE. Metra uses code 61. The public listing file including all codes can be downloaded from the IEEE web site. At the last editing of this document the list was found at http://standards-oui.ieee.org $/ \mathrm{manid} / \mathrm{manid} . \mathrm{txt}$
** A reference to the actual type name can be provided by the manufacturer as a text file ${ }^{*} . x d l$ This can be useful if the type name and type numbering according to the TEDS scheme do not match. Metra uses this possibility and provides the name file under this link: https://mmf.de/download/Model003D.xdl

3. IEEE Templates

Templates describe how the actual sensor data is arranged in the memory. There are templates for different sensor types. IEEE 1451.4 defines a "Template Description Language" (TDL). The industry has adopted a number of standard templates. Data in the template memory section can be overwritten. This will typically be the task of calibration labs. In addition there are some bytes reserved for the description of measuring points which may also be written by the user.

Most relevant for sensors with IEPE interface are the following templates:

- Template 25 for accelerometers and force transducers
- Template 27 for microphones with built-in pre-amplifier

IEEE Template $\mathbf{2 5}$ for Accelerometers and Force Transducers

We will describe this template here in detail because it is applied in Metra products.
Template 25 contains data relevant for accelerometers like sensitivity, high pass frequency, resonance frequency and quality, sensor weight, axis orientation, calibration frequency and date. A template can have several switch bits for different sub-versions.
Metra uses the template 25 without transfer function as default TEDS.
In Template Description Language Template 25 is specified as follows:

```
TEMPLATE 0,8,25,"Accelerometer and Force Transducer"
```

 //The first 0 in the Template field indicates IEEE defined template
 \(/ / T h e 8\) is the number of bits to read from the sensor to get the template ID
 //the 25 is the decimal value of this template ID.
 TDL_VERSION_NUMBER 2 //Version 2 refers to the final IEEE 1451.4 version 1.0 TDL specification
ABSTRACT IEEE 1451.4 Default Accelerometer and Force Transducer Template
SPACING
//Physical Base Units: (ratio, radian, steradian, meter, kg, sec, Amp, kelvin, mole, candela, scal-
ing, offset)
PHYSICAL_UNIT $" \mathrm{~V} /\left(\mathrm{m} / \mathrm{s}^{2}\right) ", \quad(0,0,0,1,1,-1,-1,0,0,0,1,0) / / \mathrm{Volts}$ per Acceleration: V/(m/s $\left.{ }^{2}\right)=\mathrm{m} * \mathrm{~kg} /(\mathrm{s} * A)$
PHYSICAL_UNIT "V/N", $(0,0,0,1,0,-1,-1,0,0,0,1,0) / / \mathrm{Volts}$ per Newton: V/(mokg/s $\left.{ }^{2}\right)=\mathrm{m} /\left(\mathrm{s}^{*} \mathrm{~A}\right)$
PHYSICAL_UNIT "Hz",
PHYSICAL_UNIT "degrees",
PHYSICAL_UNIT ${ }^{\circ}{ }^{\circ} \mathrm{C} "$,
PHYSICAL_UNIT $" \% /$ decade",
PHYSICAL_UNIT $"^{\circ} \mathrm{C} "$,
PHYSICAL_UNIT $" \% /$ decade",
PHYSICAL_UNIT $\% \% /{ }^{\circ} \mathrm{C}$ ",
PHYSICAL_UNIT $" \% /{ }^{\circ} \mathrm{C} "$,
PHYSICAL_UNIT "N/m",
PHYSICAL_UNIT "g",
PHYSICAL_UNIT $" \% /{ }^{\circ} \mathrm{C} "$,
PHYSICAL_UNIT "N/m",
PHYSICAL_UNIT "g",
$(0,0,0,0,0,-1,0,0,0,0,1,0) \quad / /$ Frequency: Hertz $=1 /$ second
$(0,1,0,0,0,0,0,0,0,0,0.0174533,0) \quad / /$ degrees $=0.0174533$ radians
$(0,0,0,0,0,0,0,1,0,0,1,-273.15) \quad / /$ Celsius is (kelvin - 273.15 K$)$
$(6,0,0,0,0,-1,0,0,0,0,0.01,0) \quad / /$ Flatness over frequency: $0.01 /$ (log10 (Hz/Hz))
(1)
PHYSICAL_UNIT "days",
$(0,0,0,0,1,-2,0,0,0,0,1,0) \quad / / \mathrm{Newton} / \mathrm{m}$ equals $\left(\mathrm{mokg} / \mathrm{s}^{2}\right) / \mathrm{m}=\mathrm{kg} / \mathrm{s}^{2}$
$(0,0,0,0,1,0,0,0,0,0,0.001,0) \quad / / \mathrm{gram}=0.001 \mathrm{~kg}$
PHYSICAL_UNIT days, $(0,0,0,0,0,1,0,0,0,0,86400,0) / /$ Time: Days $=86400$ seconds

```
SELECTCASE "Transducer Type", ID, 1
```

 CASE "Accelerometer", 0
 SELECTCASE "Extended Functionality (Programmable Sensitivity)", ID, 1
 CASE "No Extended Functionality", 0
 UGID "I25-0-0-0", "Accelerometer"
 \%Sens@Ref, "Sensitivity @ reference condition", CAL, 16, ConRelRes, 5E-7, 0.00015, "rp", "V/m/s²)"
 \%TF_HP_S, "High pass cut-off frequency (F hp)", CAL, 8, ConRelRes, 0.005, 0.03, "rp", "Hz"
 ENDCASE
 CASE "Extended Functionality (Programmable Sensitivity)", 1
 UGID "I25-0-1-0", "Accelerometer, programmable Sensitivity"
 \%passive[Initialize], "Initialize not needed", ID, 1, UNINT, "", "" = 0
 \%passive[CtrlFunctionMask], "Control Function Mask", ID, 4, BitBin, "", "" = "11"
 \%passive[ReadWrite], "Write only", ID, 2, UNINT, "", "" = 3
 \%passive[FunctionType], "Passive control type", ID, 2, UNINT, "","" = 0//checkmark
 \%passive[Function], "Passive mode", USR, 10, BitBin, "","" = "xx,00"
 \%sens[Initialize], "Initialize not needed", ID, 1, UNINT, "", "" = 0
 \%sens[CtrlFunctionMask], "Control Function Mask",ID, 4, BitBin, "", "" = "11"
 \%sens[ReadWrite], "Write only", ID, 2, UNINT, "", "" = 3
 \%sens[FunctionType], "Sensitivity control type", ID, 2, UNINT, "", "" = 1//One Exactly
 \%sens[Function], \%Sens@Ref["10"], USR, 4, BitBin, "", "" = "10" //High sensitivity

Manfred Weber

Metra Mess- und Frequenztechnik in Radebeul e.K.
Meißner Str. 58
D-01445 Radebeul
Tel. +49-351-836 2191
P.O. Box 010113

D-01435 Radebeul
Fax +49-351-836 2940

Page 2
December 19
Internet: www.MMF.de
Email: Info@MMF.de
\%sens[Function], \%Sens@Ref["01"], USR, 4, BitBin, "", "" = "01" //Low sensitivity \%defaultFR, "Default setting", ID, 2, UNINT, "", "" \%Passive, "Supports multiplexer mode", ID, 1, UNINT, "", ""
\%Sens@Ref["01"], "Low sensitivity @ Fref", CAL, 16, ConRelRes, 5E-7, 0.00015, "rp", "V/(m/s²)"
\%Sens@Ref["10"], "High sensitivity @ Fref", CAL, 16, ConRelRes, 5E-7, 0.00015, "rp", "V/(m/s²)" \%TF_HP_S["01"], "Low sensitivity high pass cut-off frequency", CAL, 8, ConRelRes, 0.005,
0.03, "rp", "Hz"
\%TF_HP_S["10"], "High sensitivity high pass cut-off frequency", CAL, 8, ConRelRes, 0.005 ,
0.03, "rp", " Hz "

EnDCASE
ENDSELECT
ENDCASE
CASE "Force Transducer", 1
SELECTCASE "Extended Functionality (Programmable sensitivity)", ID, 1
CASE "No Extended Functionality", 0
UGID "I25-1-0-0", "Force Transducer"
\%Sens@Ref, "Sensitivity @ reference condition", CAL, 16, ConRelRes, 5E-7, 0.00015, "rp", "V/N" \%TF HP S, "High pass cut-off frequency (F hp)", CAL, 8, ConRelRes, 0.005, 0.03, "rp", "Hz" \%Stiffness, "Stiffness of transducer", CAL, 6, ConRelRes, 1E6, 0.10, "rp", "N/m" \%Mass_below, "Mass below gage", CAL, 6, ConRelRes, 0.1, 0.1, "rp", "g" ENDCASE
CASE "Extended Functionality (Programmable sensitivity)", 1
UGID "I25-1-1-0", "Force Transducer, programmable sensitivity"
\%passive[Initialize], "Initialize not needed", ID, 1, UNINT, "", "" = 0
\%passive[CtrlFunctionMask], "Control Function Mask",ID, 4, BitBin, "", "" = "11"
\%passive[ReadWrite], "Write only", ID, 2, UNINT, "", "" = 3
\%passive[FunctionType], "Passive control type", ID, 2, UNINT, "","" = 0//checkmark
\%passive[Function], "Passive mode", USR, 10, BitBin, ""," = "xx,00"
\%sens[Initialize], "Initialize not needed", ID, 1, UNINT, "", "" = 0
\%sens[CtrlFunctionMask], "Control Function Mask",ID, 4, BitBin, "", " = "11"
\%sens[ReadWrite], "Write only", ID, 2, UNINT, "", "" = 3
\%sens[FunctionType], "Sensitivity control type", ID, 2, UNINT, "", "" = 1//One Exactly
\%sens[Function], \%Sens@Ref["10"], USR, 4, BitBin, "", "" = "10" //High sensitivity
\%sens[Function], \%Sens@Ref["01"], USR, 4, BitBin, "", "" = "01" //Low sensitivity
\%defaultFR, "Default setting", ID, 2, UNINT, "",""
\%Passive, "Supports multiplexer mode", ID, 1, UNINT, "", ""
\%Sens@Ref["01"], "Low sensitivity @ Fref", CAL, 16, ConRelRes, 5E-7, 0.00015, "rp", "V/N" \%Sens@Ref["10"], "High sensitivity @ Fref", CAL, 16, ConRelRes, 5E-7, 0.00015, "rp", "V/N" \%TF HP S["01"], "Low sensitivity high pass cut-off frequency", CAL, 8, ConRelRes, 0.005,
0.03, "rp", " Hz "
\%TF_HP_S["10"], "High sensitivity high pass cut-off frequency", CAL, 8, ConRelRes, 0.005 ,
0.03, "rp", "Hz"
\%Stiffness, "Stiffness of transducer", CAL, 6, ConRelRes, 1E6, 0.10, "rp", "N/m"
\%Mass_below, "Mass below gage", CAL, 6, ConRelRes, 0.1, 0.1, "rp", "g"
\%PhaseCorrection, "Phase correction @ reference condition", CAL, 6, CONRES, -3.2, 0.1, "rp",
"degrees"
ENDCASE
ENDSELECT
ENDCASE

ENDSELECT

ENUMERATE DirectionEnum,"x","y","z"
\%Direction, "Sensitivity direction (x, y, z)", CAL, 2, DirectionEnum, "e", ""
\%Weight, "Transducer weight", CAL, 6, CONRELRES, 0.1, 0.1, "rp", "g"
ENUMERATE ElecSigTypeEnum,"Voltage Sensor","Current Sensor","Resistance Sensor","Bridge
Sensor","LVDT Sensor","Potentiometric Voltage Divider Sensor","Pulse Sensor","Voltage
Actuator","Current Actuator","Pulse Actuator"
\%ElecSigType, "Transducer Electrical Signal Type", ID, 0, ElecSigTypeEnum,"e","" = "Voltage Sensor"
ENUMERATE MapMethEnum, "Linear","Inverse m/(x+b)","Inverse (b+m/x)", "Inverse 1/(b+m/x)","Thermocou-
ple","Thermistor", "RTD", "Bridge"
\%MapMeth, "Mapping Method", ID, 0, MapMethEnum, "e","" = "Linear"
ENUMERATE ACDCCouplingEnum,"DC","AC"
\%ACDCCoupling, "AC or DC Coupling", ID, 0, ACDCCouplingEnum,"e","" = "AC"

Manfred Weber

Metra Mess- und Frequenztechnik in Radebeul e.K.
Meißner Str. 58
P.O. Box 010113

D-01445 Radebeul
D-01435 Radebeul
Fax +49-351-836 2940
Page 3

```
ENUMERATE SignEnum,"Positive","Negative"
%Sign, "Polarity (Sign)", CAL, 1, SignEnum, "e", ""
SELECTCASE "Transfer Function", ID, 1
    CASE "No Transfer Function Specified", 0
    ENDCASE
    CASE "Transfer Function Specified", 1
        %TF SP, "Low pass cut-off frequency (F lp)", CAL, 7, ConRelRes, 10, 0.05, "rp", "Hz"
        %TF_KPr, "Resonance frequency (F res)", CAL, 9, ConRelRes, 100, 0.01, "rp", "Hz"
        %TF_KPq, "Quality factor @ F res (Q)", CAL, 9, ConRelRes, 0.4, 0.01, "rp",""
        %TF SL, "Amplitude slope (a)", CAL, 7, ConRes, -6.3, 0.1, "0.0", "%/decade"
        %TempCoef, "Temperature coefficient (b)", CAL, 6, ConRes, -0.8, 0.025,"0.000","%/ }\mp@subsup{}{}{\circ}\textrm{C}
    ENDCASE
ENDSELECT
%Reffreq, "Reference frequency (F ref)", CAL, 8, ConRelRes, 0.35, 0.0175, "Op","Hz"
%RefTemp, "Reference temperature (T ref)", CAL, 5, ConRes, 15, 0.5, "0.0"," }\mp@subsup{}{}{\circ}\textrm{C}
%CalDate, "Calibration Date", CAL, 16, DATE,"d-mmm-yyyy",""
%CalInitials, "Calibration Initials", CAL, 15, CHR5,"s",""
%CalPeriod, "Calibration Period (Days)", CAL, 12, UNINT, "0", "days"
%MeasID, "Measurement location ID", USR, 11, UNINT,"0", ""
```

ENDTEMPLATE

The table below shows how the individual parameters are coded. TEDS uses different data types to pack the data as dense as possible. Several switch bits can be used to modify the template. Metra disables, for example, the transfer function by default.

Entry	Bit no.	Type	Meaning	Example
Chksum	8	binary	check sum, two's complement of the sum of all bytes including the basic TEDS, except the byte of the checksum itself. The sum of all bytes, including the checksum, is zero.	4Fh
Sel_Desc	2	binary	selector of descriptor bits; $0=$ TEDS to IEEE 1451.4	0h
Templ_No	8	binary	template no.; 8 Bits	$\begin{aligned} & \text { 19h } \\ & \text { (No.25) } \end{aligned}$
Case_a/F	1	binary	case bit sensor type: $0=$ accelerometer; $1=$ force transducer	0h
Case_Gain	1	binary	case bit gain: $0=$ fixed gain; $1=$ programmable gain	0h
Sens	16	ConRelRes	sensitivity $B_{\text {ua }}$ in V / ms^{-2} $\begin{aligned} & B_{u a}=5 \cdot 10^{-7} \cdot 1,0003^{\text {Sens }} \\ & \text { Sens }=\frac{1}{\log (1,0003)} \cdot \log \left(\frac{B_{u a}}{5 \cdot 10^{-7}}\right)=7676,4 \cdot \log \left(\frac{B_{u a}}{5 \cdot 10^{-7}}\right) \end{aligned}$	$\begin{aligned} & 6752 \mathrm{~h} \\ & \left(\mathrm{~B}_{\text {ua }}=1,395 \mathrm{mV} / \mathrm{ms}^{-2}\right) \end{aligned}$
HP*	8	ConRelRes	high pass frequency in Hz $\begin{aligned} & f_{h p}=5 \cdot 10^{-3} \cdot 1,06^{H P} \\ & H P=\frac{1}{\log (1,06)} \cdot \log \left(\frac{f_{h p}}{5 \cdot 10^{-3}}\right)=39,5 \cdot \log \left(\frac{f_{h p}}{0,005}\right) \end{aligned}$	$\begin{aligned} & 46 \mathrm{~h} \\ & \left(\mathrm{f}_{\mathrm{hp}}=0,295 \mathrm{~Hz}\right) \end{aligned}$
Dir	2	Enumeration	$0=\mathrm{X} ; 1=\mathrm{Y} ; 2=\mathrm{Z} ; 3=$ not specified	3 h (not specified)
Weight*	6	ConRelRes	weight of sensor in grams $\begin{aligned} & m=0,1 \cdot 1,2^{\text {Weight }} \\ & \text { Weight }=\frac{1}{\log (1,2)} \cdot \log \left(\frac{m}{0,1}\right)=12,6 \cdot \log \left(\frac{m}{0,1}\right) \end{aligned}$	$\begin{aligned} & 20 \mathrm{~h} \\ & (\mathrm{~m}=34 \mathrm{~g}) \end{aligned}$
Polarity	1	Enumeration	$0=$ positive; $1=$ negative	0h (positive)

Manfred Weber

Metra Mess- und Frequenztechnik in Radebeul e.K.
Meißner Str. 58
D-01445 Radebeul
P.O. Box 010113

Tel. +49-351-836 2191

D-01435 Radebeul
Fax +49-351-836 2940

Page 4
December 19
Internet: www.MMF.de
Email: Info@MMF.de

Entry	Bit no.	Type	Meaning	Example
CaseTransf	1	binary	case bit for transfer function: $1=$ specified; $0=$ none	1h
LP*	7	ConRelRes	low pass frequency in Hz $\begin{aligned} & f_{l p}=10 \cdot 1,1^{L P} \\ & L P=\frac{1}{\log (1,1)} \cdot \log \left(\frac{f_{l p}}{10}\right)=24,16 \cdot \log \left(\frac{f_{l p}}{10}\right) \end{aligned}$	$\begin{array}{\|l\|} \hline 7 \mathrm{Fh} * \\ \text { (not specified) } \end{array}$
Res_Freq_ x^{*}	9	ConRelRes	resonance frequency in Hz $\begin{aligned} & f_{\text {res }}=100 \cdot 1,02^{\text {Res_Freq }} \\ & \text { Res_Freq }=\frac{1}{\log (1,02)} \cdot \log \left(\frac{f_{\text {res }}}{100}\right)=116,3 \cdot \log \left(\frac{f_{\text {res }}}{100}\right) \end{aligned}$	$\begin{aligned} & 118 \mathrm{~h} \\ & \left(\mathrm{f}_{\text {res }}=25589 \mathrm{~Hz}\right) \end{aligned}$
Q_Res_x*	9	ConRelRes	resonance quality $\begin{aligned} & Q=0,4 \cdot 1,02^{\mathrm{Q} _ \text {Res }} \\ & \text { Q_Res }=\frac{1}{\log (1,02)} \cdot \log \left(\frac{Q}{0,4}\right)=116,3 \cdot \log \left(\frac{Q}{0,4}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A} 3 \mathrm{~h} \\ & (\mathrm{Q}=10,1) \end{aligned}$
Slope*	7	ConRes	amplitude slope in \%/decade $\begin{aligned} & S=-6,3+0,1 \cdot \text { Slope } \\ & \text { Slope }=(S+6,3) \cdot 10 \end{aligned}$	$\begin{aligned} & 53 \mathrm{~h} \\ & (\mathrm{~S}=2 \% / \text { decade }) \end{aligned}$
Temp_Co*	6	ConRes	$\begin{aligned} & \text { temperature coefficient in } \% / \mathrm{K} \\ & T K\left(B_{u a}\right)=-0,8+0,025 \cdot \text { Temp_Co } \\ & \text { Temp_Co }=\left(T K\left(B_{u a}\right)+0,8\right) \cdot 40 \end{aligned}$	$\begin{aligned} & 1 \mathrm{Dh} \\ & \left(\mathrm{TK}\left(\mathrm{~B}_{\mathrm{ua}}\right)=-0,075 \% / \mathrm{K}\right) \end{aligned}$
Ref_Freq*	8	ConRelRes	calibration frequency in Hz $\begin{aligned} & f_{\text {ref }}=0,35 \cdot 1,035^{\text {Ref_Freq }} \\ & \text { Ref_Freq }=\frac{1}{\log (1,035)} \cdot \log \left(\frac{f_{\text {ref }}}{0,35}\right)=66,9 \cdot \log \left(\frac{f_{\text {ref }}}{0,35}\right) \end{aligned}$	$\begin{aligned} & 9 \mathrm{Eh} \\ & \left(\mathrm{f}_{\text {ref }}=80,3 \mathrm{~Hz}\right) \end{aligned}$
Ref_Temp*	5	ConRes	calibration temperature in ${ }^{\circ} \mathrm{C}$ $\begin{aligned} & T_{\text {ref }}=15+0,5 \cdot \text { Ref_Temp } \\ & \text { Ref_Temp }=\left(T_{\text {ref }}-15\right) \cdot 2 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~h} \\ & \left(\mathrm{~T}_{\text {ref }}=23^{\circ} \mathrm{C}\right) \end{aligned}$
Cal_Date	16	DATE	calibration date in days since 01/01/1998 $65535=$ not specified	$\begin{aligned} & \hline \text { EF2h } \\ & (23 / 06 / 08) \end{aligned}$
Cal_Init	15	Chr5	calibration initials, 3 characters, starting in LSB ($0=$ space, $1=\mathrm{A}, 2$ = B..., . $/$ _ @ $)$	$\begin{aligned} & \mathrm{AB} 2 \mathrm{~h} \\ & \text { (BUR) } \end{aligned}$
Cal_Per	12	UNINT	calibration period in days (integer) $1-4094 ; 4095=$ not specified	$\begin{aligned} & \text { 16Dh } \\ & \text { (365 days) } \end{aligned}$
Meas_ID	11	UNINT	measurement point ID no. (integer) 1-2046; $2047=$ not specified	$\begin{aligned} & 2 \mathrm{~h} \\ & (2) \end{aligned}$
Sel	2	binary	selector bits for remaining memory (normally 3)	3h
Ext_End_Sel	1	binary	extended end selector, $1=$ remaining bits used as user text data	1h
User	94	7 bit ASCII	user text data	"abcdefghijklm"

Manfred Weber

Metra Mess- und Frequenztechnik in Radebeul e.K.
Meißner Str. 58
D-01445 Radebeul
Tel. +49-351-836 2191
P.O. Box 010113

D-01435 Radebeul
Fax +49-351-836 2940

Page 5
December 19
Internet: www.MMF.de Email: Info@MMF.de

* All bits set in ConRelRes and ConRes format mean "not defined".

4. TEDS Data Storage in the EEPROM DS2430A

Most legacy TEDS transducers include the discontinued DS2430A memory device featuring a 256 bit EEPROM and a 64 bit onetime programmable memory called application register.
The one-time programmable application register holds the Basic TEDS. The following table shows the arrangement of the data. The bit values under the identifiers show the data used as example in chapter 2.

7	6	5	4	3	2	1	0	Bit no	Example
$\operatorname{Man}_{0} \mathrm{ID}_{2} 7$	Man_ID_6	Man_ID_5	Man_ID_4	Man_ID_3	$\operatorname{Man}_{\frac{1}{1}} \mathrm{DD}_{2}$	$\text { Man } \underset{0}{ } \mathrm{ID}_{1} 1$	$\operatorname{Man}_{1} \mathrm{ID} _0$	00	3Dh
Model_1 1	Model_0 0	$\operatorname{Man}_{0} \mathrm{ID}_{0} 13$	Man_ID_12	$\text { Man_ID_1 }_{0}$	$\underset{0}{\text { Man_ID_10 }}$	$\text { Man } \underset{0}{\operatorname{ID} _9}$	Man_ID_8	08	80h
$\begin{gathered} \text { Model_9 } \\ 0 \end{gathered}$	Model_8 0	$\begin{gathered} \text { Model_7 } \\ 0 \end{gathered}$	Model_6 1	$\begin{gathered} \text { Model_5 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Model_4 } \\ 0 \end{gathered}$	Model_3 0	Model_2 1	16	11h
$\frac{\text { Ver_Let } 2}{0}$	$\frac{\text { Ver_Let_1 }}{0}$	Ver_Let_0	$\begin{gathered} \text { Model_14 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Model_13 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Model_12 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Model_11 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Model_10 } \\ 0 \end{gathered}$	24	20h
$\underset{0}{\text { Ver_No_5 }}$	$\underset{0}{\text { Ver_No_4 }}$	$\underset{0}{\text { Ver_No_3 }}$	$\underset{0}{\text { Ver_No_2 }}$	$\underset{1}{\text { Ver_No_1 }}$	$\frac{\text { Ver_No_O }}{0}$	$\underset{0}{\text { Ver_Let_4 }}$	$\underset{0}{\text { Ver_Let_3 }}$	32	08h
$\begin{gathered} \text { Ser_No_7 } \\ 0 \end{gathered}$	$\underset{0}{\text { Ser_No_6 }}$	$\underset{0}{\mathrm{Ser}} \mathrm{No} 5$	$\underset{0}{\text { Ser_No_4 }}$	$\underset{0}{\text { Ser_No_3 }}$	$\underset{0}{\mathrm{Ser} \mathrm{No} 2}$	Ser_No_1	$\mathrm{Ser}_{\mathrm{O}}^{\mathrm{N}} \mathrm{No} 0$	40	02h
$\underset{0}{\text { Ser_No_15 }}$	$\underset{\mathrm{O}}{\mathrm{Ser}} \mathrm{No}$	$\underset{0}{\text { Ser_No_13 }}$	$\underset{0}{\text { Ser_No_12 }}$	$\underset{0}{\text { Ser_No_11 }}$	$\underset{0}{\text { Ser_No_10 }}$	$\mathrm{Ser}_{1} \mathrm{No} \text { _9 }$	$\underset{0}{\mathrm{Ser}} \mathrm{O}$	48	02h
$\underset{0}{\text { Ser_No_23 }}$	$\underset{0}{\text { Ser_No_22 }}$	$\underset{0}{\text { Ser_No_21 }}$	$\underset{0}{\text { Ser_No_20 }}$	$\underset{0}{\text { Ser_No_19 }}$	$\underset{0}{\text { Ser_No_18 }}$	$\underset{0}{\text { Ser_No_17 }}$	$\underset{0}{\text { Ser_No_16 }}$	52	00h

Manfred Weber
Metra Mess- und Frequenztechnik in Radebeul e.K.

Page 6
December 19
Internet: www.MMF.de Email: Info@MMF.de

In EEPROM the template data is stored as shown below. The bit values under the identifiers show the example data of template no. 25 from chapter 3. The transfer function is disabled by bit CaseTransf. Therefore the data of the transfer function is not included. The first byte of the EEPROM holds the check sum calculated from the basic TEDS and all bytes after the checksum.

MSB							LSB	$\begin{gathered} \text { Bit no. } \\ 00 \end{gathered}$	Example 89h
$\begin{gathered} \text { Chksum_7 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Chksum_6 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Chksum_5 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Chksum_4 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Chksum_3 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Chksum_2 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Chksum_1 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Chksum_0 } \\ \mathbf{1} \end{gathered}$		
$\underset{\mathbf{0}}{\text { Templ_No_5 }}$	$\underset{\mathbf{1}}{\text { Templ_No_4 }}$	$\underset{\mathbf{1}}{\text { Templ_No_3 }}$	$\underset{\mathbf{0}}{\text { Templ_No_2 }}$	$\underset{\mathbf{0}}{\text { Templ_No_1 }}$	$\underset{\mathbf{1}}{\text { Templ_No_0 }}$	$\begin{gathered} \text { Sel_Desc_1 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Sel_Desc_0 } \\ \mathbf{0} \end{gathered}$	08	64h
$\begin{gathered} \text { Sens } 3 \\ 0 \end{gathered}$	$\begin{gathered} \text { Sens_2 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Sens_1 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Sens_0 } \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { Case_Gain } \\ \mathbf{0} \\ \hline \end{gathered}$	$\underset{0}{\text { Case_a/F }}$	$\underset{\mathbf{0}}{\text { Templ_No_7 }}$	$\underset{\mathbf{0}}{\text { Temp_No_6 }}$	16	20h
$\begin{gathered} \text { Sens_11 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Sens_10 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Sens } 9 \\ 1 \end{gathered}$	$\begin{gathered} \text { Sens_8 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Sens } 7 \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Sens_6 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Sens 5 } 5 \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Sens_4 } \\ \mathbf{1} \end{gathered}$	24	75h
$\begin{gathered} \mathrm{HP}_{3} 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { HP_2 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \hline \text { HP_1 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \mathrm{HP}_{\mathbf{0}} 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sens_15 } \\ \mathbf{0} \end{gathered}$	$\underset{\mathbf{1}}{\text { Sens_14 }}$	$\begin{gathered} \text { Sens_13 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Sens_12 } \\ \mathbf{0} \end{gathered}$	32	66h
$\begin{gathered} \text { Weight_1 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \hline \text { Weight_0 } \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { Dir_1 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Dir_0 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { HP_7 } \\ \hline \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { HP_6 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{HP} 5 \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{HP}_{\mathbf{0}} \mathrm{a} \\ \hline \end{gathered}$	40	34h
$\begin{gathered} \hline \text { Ref_Freq_1 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \hline \text { Ref_Freq_0 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Case_Transf } \\ 0 \end{gathered}$	$\begin{gathered} \text { Polarity } \\ 0 \end{gathered}$	$\begin{gathered} \text { Weight_5 } \\ 1 \end{gathered}$	$\begin{gathered} \text { Weight_4 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Weight } 3 \\ 0 \end{gathered}$	$\begin{gathered} \text { Weight_2 } \\ \mathbf{0} \end{gathered}$	48	88h
$\begin{gathered} \text { Ref_Temp_1 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Ref_Temp_0 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Ref_Freq_7 } \\ 1 \end{gathered}$	$\underset{0}{\text { Ref_Freq_6 }}$	$\begin{gathered} \text { Ref_Freq } 5 \\ 0 \end{gathered}$	$\begin{gathered} \text { Ref_Freq_4 } \\ 1 \end{gathered}$	$\begin{gathered} \text { Ref_Freq_3 } \\ 1 \end{gathered}$	$\begin{gathered} \text { Ref Freq } 2 \\ \mathbf{1} \end{gathered}$	56	27h
$\begin{gathered} \text { Cal_Date_4 } \\ 1 \end{gathered}$	$\begin{gathered} \text { Cal_Date_3 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Cal_Date_2 } \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { Cal_Date_1 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Cal_Date_0 } \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { Ref_Temp_4 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Ref_Temp_3 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Ref_Temp_2 } \\ \mathbf{0} \end{gathered}$	64	94h
$\begin{gathered} \text { Cal_Date_12 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Cal_Date_11 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Cal_Date_10 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Cal_Date_9 } \\ 1 \end{gathered}$	$\underset{\mathbf{c}}{\substack{\text { Cal_Date_8 } \\ \mathbf{0}}}$	$\begin{gathered} \text { Cal_Date_7 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Cal_Date_6 } \\ 1 \end{gathered}$	$\begin{gathered} \text { Cal_Date_5 } \\ \mathbf{1} \end{gathered}$	72	77h
$\underset{\mathbf{0}}{\text { Cal_Init_4 }}$	$\underset{\mathbf{0}}{\text { Cal_Init_3 }}$	$\underset{\mathbf{0}}{\mathrm{Cal} \text { _Init_2 }}$	$\begin{gathered} \text { Cal_Init_1 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { Cal_Init_0 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Cal_Date_15 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Cal_Date_14 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Cal_Date_13 } \\ \mathbf{0} \end{gathered}$	80	10h
Cal_Init_12	Cal_Init_11	$\underset{\mathbf{0}}{\text { Cal_Init_10 }}$	$\text { Cal_Init } 9$	$\underset{\mathbf{0}}{\text { Cal_Init_8 }}$	$\mathrm{Cal}_{1} \text { Init_7 }$	$\underset{\mathbf{0}}{\text { Cal_Init_6 }}$	Cal_Init_5	88	55h
$\begin{gathered} \text { Cal_Per_5 } \\ 1 \end{gathered}$	$\begin{gathered} \text { Cal_Per_4 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Cal_Per_3 } \\ 1 \end{gathered}$	$\begin{gathered} \hline \mathrm{Cal}_{-} \text {Per_2 } \\ 1 \end{gathered}$	$\underset{\mathbf{0}}{\text { Cal_Per_1 }}$	$\begin{gathered} \text { Cal_Per_0 } \\ 1 \end{gathered}$	$\begin{gathered} \text { Cal_Init_14 } \\ 1 \end{gathered}$	$\begin{gathered} \text { Cal_Init_13 } \\ \mathbf{0} \end{gathered}$	96	B6h
$\text { Meas_ID_1 }_{\mathbf{1}}$	$\frac{\text { Meas_ID_0 }}{\mathbf{0}}$	$\underset{\mathbf{0}}{\text { Cal_Per_11 }}$	$\underset{\mathbf{0}}{\text { Cal_Per_10 }}$	$\begin{gathered} \text { Cal_Per_9 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { Cal_Per_8 } \\ \mathbf{1} \end{gathered}$	$\underset{\mathbf{0}}{\mathrm{Cal} \text { Per_7 }}$	$\underset{1}{\text { Cal_Per_6 }}$	104	85h
$\underset{\mathbf{0}}{\text { Meas_ID_9 }}$	$\underset{\mathbf{0}}{\text { Meas_ID_8 }}$	$\underset{\mathbf{0}}{\text { Meas_ID_7 }}$	$\underset{\mathbf{0}}{\text { Meas_ID_6 }}$	$\underset{\mathbf{0}}{\text { Meas_ID_5 }}$	$\underset{\mathbf{0}}{\text { Meas_ID_4 }}$	$\underset{\mathbf{0}}{\text { Meas ID_3 }}$	$\underset{\mathbf{0}}{\text { Meas ID_2 }}$	112	00h
$\begin{gathered} \text { User_3 } \\ \mathbf{1}^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_2 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_1 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_0 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ext_End_Sel } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Sel_1 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { Sel_0 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\underset{\mathbf{0}}{\text { Meas_ID_10 }}$	120	AEh
$\begin{gathered} \hline \text { User_11 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_10 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User-9 } \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { User_8 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User-7 } \\ \mathbf{1}^{-} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_6 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_5 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_4 } \\ \mathbf{1}^{-} \\ \hline \end{gathered}$	128	CFh
$\begin{gathered} \hline \text { User_19 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_18 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_17 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_16 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_15 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_14 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_13 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_12 } \\ \mathbf{1} \\ \hline \end{gathered}$	136	E3h
$\begin{gathered} \text { User_27 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_26 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_25 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_24 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_23 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_22 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_21 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_20 } \\ \mathbf{1} \end{gathered}$	144	EFh
$\begin{gathered} \text { User_35 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_34 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_33 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_32 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_31 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_30 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_29 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_28 } \\ \mathbf{0} \\ \hline \end{gathered}$	152	F6h
$\begin{gathered} \text { User_43 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_42 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_41 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_40 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_39 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_38 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_37 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_36 } \\ \mathbf{0} \end{gathered}$	160	3Ah
$\begin{gathered} \text { User_51 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_50 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_49 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_48 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_47 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_46 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_45 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_44 } \\ \mathbf{1} \end{gathered}$	168	7Dh
$\begin{gathered} \text { User_59 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_58 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_57 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_56 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \hline \text { User_55 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_54 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \hline \text { User_53 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_52 } \\ \mathbf{0} \end{gathered}$	176	2Eh
$\begin{gathered} \hline \text { User_67 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_66 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_65 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_64 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_63 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_62 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_61 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_60 } \\ \mathbf{1} \\ \hline \end{gathered}$	184	8Fh
$\begin{gathered} \hline \text { User_75 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_74 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \hline \text { User_73 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \hline \text { User_72 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_71 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_70 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_69 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \hline \text { User_68 } \\ \mathbf{1} \end{gathered}$	192	C3h
$\begin{gathered} \text { User_83 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_82 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_81 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_80 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_79 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_78 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_77 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_76 } \\ \mathbf{1} \\ \hline \end{gathered}$	200	DFh
$\begin{gathered} \text { User_91 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_90 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_89 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_88 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_87 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_86 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_85 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { User_84 } \\ \mathbf{0} \\ \hline \end{gathered}$	208	EEh
$\begin{gathered} \text { User_99 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_98 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_97 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_96 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_95 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_94 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_93 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_92 } \\ \mathbf{0} \end{gathered}$	216	36h
$\begin{gathered} \text { User_107 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_106 } \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_105 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_104 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_103 } \\ \hline \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_102 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_101 } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_100 } \\ \mathbf{1} \end{gathered}$	224	7Bh
$\begin{gathered} \text { User_115 } \\ \hline \end{gathered}$	$\begin{gathered} \text { User_114 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_113 } \\ \hline \end{gathered}$	$\begin{gathered} \text { User_112 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_111 } \\ \hline \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_110 } \\ \hline \end{gathered}$	$\begin{gathered} \text { User_109 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_108 } \\ \hline \end{gathered}$	232	ADh
$\begin{gathered} \text { User_123 } \\ \hline \end{gathered}$	$\begin{gathered} \text { User_122 } \\ \hline \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_121 } \\ \hline \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_120 } \\ \hline \end{gathered}$	$\begin{gathered} \text { User_118 } \\ \hline \end{gathered}$	$\begin{gathered} \text { User_1 } 18 \\ \hline \end{gathered}$	$\begin{gathered} \text { User_117 } \\ \hline \mathbf{1} \end{gathered}$	$\begin{gathered} \text { User_116 } \\ \hline \end{gathered}$	240	4Eh
$\begin{gathered} \text { User_131 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_130 } \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_129 } \\ \hline \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_128 } \\ \hline \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_127 } \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { User_126 } \\ \hline \mathbf{0} \end{gathered}$	$\begin{gathered} \text { User_125 } \\ \hline \end{gathered}$	$\begin{gathered} \text { User_124 } \\ \hline \end{gathered}$	248	03h

Metra Mess- und Frequenztechnik in Radebeul e.K.

Page 7
December 19
Internet: www.MMF.de
Email: Info@MMF.de

5. TEDS Data Storage in the EEPROM DS2431

For sensors made in 2020 or later Metra uses the 1024 bit EEPROM DS2431 with four blocks of 256 bit each. This memory device does not have a one-time programmable application register. Due to this fact the basic TEDS data must be stored also in the erasable EEPROM section. Thus it will not be protected anymore against manipulation.
Each of the four blocks contains a check sum in the first byte. The checksum is calculated from the remaining 31 bytes of the block. The additional memory space compared to the DS2431A can be filled with user text.
The following table shows the arrangement of data in the DS2431.

Byte	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Block 1	C	B	B	B	B	B	B	B	B	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
Block 2	C	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
Block 3	C	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
Block 4	C	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T

C: check sum (1 byte)
B: Basic TEDS (8 bytes)
T: TEDS template and user data (remaining bytes)

6. Detecting the Memory Device

Each 1-Wire device has a 64 bit lasered ROM section containing unique ID data. The data is arranged as follows:

8 bit CRC code	48 bit serial number	8 bit family code
MSB	LSB	

The family code in the lower 8 bits is used to identify the memory device so that the software can decode the data accordingly.
DS2430A 14h

DS2431 2Dh
More details regarding 1-Wire communication can be found in the corresponding data sheets of Maxim Integrated https://www.maximintegrated.com/en/products/interface/one-wire.html

Metra Mess- und Frequenztechnik in Radebeul e.K.
Meißner Str. 58
D-01445 Radebeul
Tel. +49-351-836 2191

